
Avi Networks Ansible Documentation
Release 17.1.0

Avi Networks

Apr 25, 2020

Contents

1 What is Ansible? 1

2 Our Automation 3
2.1 Introduction . 3
2.2 Playbooks . 11

i

ii

CHAPTER 1

What is Ansible?

Ansible is an IT automation tool based on Python. It can managae network devices, configure systems, orchestrate
cloud environments and deploy software.

It’s goal is to create a secure way to manage infrastructure (using OpenSSH) and allow easy auditing by even those
not familiar with the product. There’s no complicated syntax to learn, or any complicated languages. It’s designed for
developers, system adminstrators, network engineers, security engineers, and release engineers.

Ansible is an agentless automation tool. Which means there is no agent that is required to be installed on the remote
host. It just requires a “control” machine which executes Ansible playbooks against remote servers. Of course the
control host will require access to the remote servers.

Avi Networks recognizes how automation using Ansible is drastically changing the way network and operations teams
work and have decided to support the project by providing modules, and roles that allow automation in Ansible to be
used against Avi Networks software.

1

Avi Networks Ansible Documentation, Release 17.1.0

2 Chapter 1. What is Ansible?

CHAPTER 2

Our Automation

At Avi automation is in our blood. We understand how important automating the entire CI/CD pipeline is, and infact
we use that same philosophy in our Ansible module development. Each module is built 1:1 from our APIs. Using
automation we are able to build our modules from our objects automatically.

What does that mean?

Ever new feature, every new release will have modules that same moment to support those new features. No more
waiting for a developer to write new modules to support the feature.

2.1 Introduction

Let’s get started with the basics to Ansible. We will cover installation, getting started, understanding yaml, and the
other key properties that are needed to use Ansible’s vast amount of features.

2.1.1 Installation

• Chosing a Version

• Requirements

• Installing Ansible

– Installing via YUM

– Installing via Apt

– Installing via Pip

– Installing via Brew

3

Avi Networks Ansible Documentation, Release 17.1.0

Chosing a Version

We recommend using the latest major release available. Our playbooks, roles, and modules have been developed on
2.2, so we would recommend that version or later. However, 2.1 can be used but may have occasional issues on some
of our playbooks, roles, and modules.

Requirements

Ansible can be ran from any machine running Python 2.6 or 2.7. In Ansible 2.2, a preview version of Python 3 support
was added.

Warning: Some modules and plugins will have additional requirements. Some may be libraries on the local
machine, and some on remote machines. Please check the module documentation prior to executing the module.

For further installation requirements please visit Ansible’s Installation documentation at http://docs.ansible.com/
ansible/intro_installation.html

Installing Ansible

Ansible is available through many package repositories including EPEL, Apt, YUM, Portage, and many more. Here I
will cover the most common ways to deploy Ansible to a host.

• Installing via YUM

• Installing via Apt

• Installing via Pip

• Installing via Brew

Installing via YUM

RPMs for Ansible are located in the EPEL repository. You will need to enable this repository on your host. To install
EPEL on most recent operating systems use the following command.

sudo yum install epel-release

This will install the EPEL repository form your base OS repository. If this fails, you can also try and use the following
command. Please modify <version> with the correct version of your distribution.

sudo rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-<version>.
→˓noarch.rpm

Once EPEL is installed you will be able to simply run the following command, which will install Ansible from EPEL
onto your host.

sudo yum install ansible

4 Chapter 2. Our Automation

http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html

Avi Networks Ansible Documentation, Release 17.1.0

Installing via Apt

Ansible is not included in any of Ubuntu’s repositories, and needs to be installed via PPA. To use PPA you will need
to run the following commands. These commands will install the proper package tools to add the PPA repository, and
update your cache, and then install the Ansible package.

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install ansible

Installing via Pip

Ansible can also be installed via Pip. Pip is a Python package manager. If it is not already available on your system
you may install it with the following command.

sudo easy_install pip

Then to install Ansible the following command.

sudo pip install ansible

It has been documented that on OS X Mavericks there could be issues with the compiler. To work around the issue
use the following command.

sudo CFLAGS=-Qunused-arguments CPPFLAGS=-Qunused-arguments pip install ansible

Installing via Brew

Mac OSX has an awesome utility called brew, which is available if Homebrew is installed. If installed, to install
ansible becomes one simple command.

brew install ansible

2.1.2 Getting Started

• How does Ansible Work?

• Host Key Checking

• Testing Connectivity

How does Ansible Work?

Ansible uses OpenSSH by default to connect and execute commands on remote hosts. This also allows the user to take
advantage of ControlPersist, Kerberos, and the options avaialble in the users SSH config (~/.ssh/config). If OpenSSH
is too old on the host, and it requires features in a newer version, Ansible will attempt to use paramiko to execute. If
you want to use Kerberos in this situation, please upgrade your OpenSSH version.

2.1. Introduction 5

Avi Networks Ansible Documentation, Release 17.1.0

By default, Ansible will attempt to use your SSH key to authenticate the current user to the remote server. To prevent
this and customize these options please review the following:

--ask-pass option to allow us to supply a password for login to the remote host via prompt.

--ask-become-pass option to allow us to supply a password for sudo/become login to the remote host via prompt

--user <myuser> option to allow us to supply a user for login to the remote host

Host Key Checking

Host checking is used to verify the known host key against the host key on the remote server. Host keys are often times
located in your known_hosts file. This file is usually located at ~/.ssh/known_hosts. If this file doesn’t
have a host key for the host it will ask if you trust it. If not then it proceeds. However, if the host is in there, but the
key doesn’t match, it will return an error. When using automation sometimes this is common, and not an issue. In
Ansible we have a way to disable errors on host key checking. You can edit /etc/ansible/ansible.cfg or
~/.ansible.cfg and set host_key_checking = False. For example:

[defaults]
host_key_checking = False

You can also use an environment variable, however I do discourage this practice unless required.

export ANSIBLE_HOST_KEY_CHECKING=False

Testing Connectivity

When using Ansible, we rely on connectivity to the remote host via ssh. To test if we can connect we can use

ansible 10.20.10.200 -m ping -u root --ask-pass

This command will connect over SSH to the remote host and verify connectivity. We will explain later more about this
type of Ansible command.

2.1.3 Understanding YAML

This page will explain the structure of YAML (Yet syntax which is the syntax for Ansible playbooks. Ansible chose
YAML because of it’s ease of use and readability. It also maintans the same ability JSON does to display objects.

• YAML Basics

– Indentation

– Key-Value Pairs

– Nesting Dictionaries

– Arrays

– Handling Newlines

6 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

YAML Basics

Indentation

YAML uses a fixed indentation scheme. Each level consists of 2 spaces, do not use tabs.

Key-Value Pairs

In YAML we display dictionaries as key-value pairs. Also know as hashes. In YAML, dictionary keys are represented
by strings terminated by a colon. Following a space the value is specified. For example:

key: value

In json it would convert to, which just so happens to be the same as a json dictionary.

{ 'key': 'value'}

Nesting Dictionaries

To nest dictionaries in YAML we would use the following syntax.

first_level:
second_level_key: second_level_value

In python this would be recognized as:

{
"first_level": {

"second_level_key": "second_level_value"
}

}

Arrays

In YAML we also can create arrays. Arrays are basically lists of items. Arrays can be a list of dictionaries or single
items. Each item in a list is prefixed with a - and then a space.

- item1
- item2
- item3

This is a simple list of 3 items.

Often times in YAML we will display an array as a value of a key.

items:
- item1
- item2
- item3

Which in python would be seen as

2.1. Introduction 7

Avi Networks Ansible Documentation, Release 17.1.0

{ "items": ["item1", "item2", "item3"] }

Handling Newlines

Sometimes we will want to make our YAML values span multiple lines, or maybe shorten a really long line into a
smaller one. We can do that in two ways.

The symbol | will maintain your newlines in the value.

include_newlines: |
I definitely needed some
new lines in this output

Will render as:

I definitely needed some
new lines in this output

The symbol > will ignore newlines and move all lines into a single line of text.

ignore_newlines: >
I am really
starting to enjoy
using YAML

Will render as:

I am really starting to enjoy using YAML

2.1.4 Inventory

• Inventory File

• Hosts

• Groups

• Non-standard SSH Ports

• Host Patterns

• Host Entry Components

• Using Hosts not in Inventory

• Behavioral Inventory Parameters

Inventory File

Ansible uses an inventory file to provide a list of hosts to Ansible. These hosts can be seperated into groups, or
individual in the inventory file. The default inventory file is located at /etc/ansible/hosts but you can supply
your own and point to it using the -i <inventory_file> option when running an Ansible playbook or command.
The inventory file is usually written in INI format.

8 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

Hosts

In the inventory file hosts by themselves are the simplest to define. A simple inventory file can look like this:

host.example.com

Groups

When using groups in your inventory file you can classify your hosts and decide what groups of hosts you want to
control from Ansible. You can also include a single host in multiple groups. Such as the being a webserver and a
database at the same time.

Groups are defined like this:

[webserver]
server1.example.com
server2.example.com

[database]
db1.example.com
db2.example.com

There is one catch though. When using groups we cannot place single hosts not included with any groups below. So
the following will apply:

my single hosts
host.example.com
host1.example.com
host2.example.com

Put Groups below
##################
[webserver]
server1.example.com
server2.example.com

[database]
db1.example.com
db2.example.com

Non-standard SSH Ports

If you are running non-standard SSH ports on your hosts you can also specify the port on the hostname seperated by a
colon. For example:

host.example.com:2222

Host Patterns

In an inventory file we can also define multiple hosts with one entry. You can specify numeric ranges, as well as
alphabetic ranges.

Numeric range example:

2.1. Introduction 9

Avi Networks Ansible Documentation, Release 17.1.0

host[1:10].example.com

Alphabetic range example:

server1[a:e].example.com

Host Entry Components

:: <alias> <special variables> <variables>

host alias: can be a hostname or just an alias, if using an alias, you will need to specify the special variable
ansible_host=10.20.20.10

special variables: there are many of these, they include the Behavioral Inventory Parameters

variables: these are variables you want to define specifically to a host that would be used in your playbooks

Using Hosts not in Inventory

When looking to use hosts without an inventory file, we can specify the ansible-playbook or ansible ad-hoc
command as

ansible-playbook -i hostname, playbook.yml

If you noticed we added the , after the hostname. This specifies to Ansible that we want to use a comma separated list
of hosts not related to the hosts file.

Behavioral Inventory Parameters

These are also known commonly as Behavioral Inventory Parameters and can all be found here: http://docs.ansible.
com/ansible/intro_inventory.html#list-of-behavioral-inventory-parameters

2.1.5 Dynamic Inventory

Dynamic inventory allows us to with a script dynamically pull in an inventory from an environment. It could query
anything you have with an API and provide a list of servers, and groups of servers, it can even group servers by tags
as well. For example, if you have a bunch of servers in AWS, using a Dynamic inventory, you can run an Ansible
Playbook against servers based on their names, and tags. Helps when you have a dynamic environment itself.

With a dynamic inventory, you can also pull data from cloud providers, LDAP, cobbler, and other software that may
be keeping track of your servers. Ansible can support all of these using it’s external inventory system.

If you are interested in these you can read more, and view examples on the Ansible documentation website: http:
//docs.ansible.com/ansible/intro_dynamic_inventory.html

2.1.6 Patterns

When running Ad-Hoc commands Ansible can allso accept patterns, for example

ansible *.example.com -m ping

10 Chapter 2. Our Automation

http://docs.ansible.com/ansible/intro_inventory.html#list-of-behavioral-inventory-parameters
http://docs.ansible.com/ansible/intro_inventory.html#list-of-behavioral-inventory-parameters
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html

Avi Networks Ansible Documentation, Release 17.1.0

This command would ping all hosts in your inventory file that contains .example.com at the end of the host or alias.

If you wanted to use all hosts you can use:

ansible all -m ping

You can allso use:

ansible * -m ping

For more information please visit http://docs.ansible.com/ansible/intro_patterns.html

2.1.7 Ad-Hoc Commands

Ad-hoc commands are a great way to quickly issue a command against a host without running an entire playbook.
They also don’t require knowing YAML.

Ad-Hoc Command Structure

ansible <group or hostname> -m <module name> -u username [--ask-pass] [--become] [--
→˓ask-become-pass]

For more options just type ansible --help and a full list of options will be available.

2.1.8 Configuration File

Ansible provides a configuration file that allows you to customize the way Ansible runs. Ansible provides a number
of ways to provide the configuration file. They are also processed in the following order.

• ANSIBLE_CONFIG environment variable

• ansible.cfg located in the current working directory

• .ansible.cfg located in the users home directory

• /etc/ansible/ansible.cfg the main ansible configuration file

The configuration file, like the inventory file are in INI format. For most people the default file that was provided on
installation should be enough. However, if you need to customize it please use http://docs.ansible.com/ansible/intro_
configuration.html as a reference. There are many values that can be used to control Ansible.

2.2 Playbooks

2.2.1 Hosts

Each play will require a hosts line. This can be a host pattern, host group, host, and can be separated by colons. The
section looks like this. all can be replaced with something like *.example.com as well.

- hosts: all

2.2. Playbooks 11

http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html

Avi Networks Ansible Documentation, Release 17.1.0

2.2.2 Users

In playbooks we also can specify which user we want to use for the play. To do this we will use the remote_user
value. For example to use the user centos we would use this example.

- hosts: all
remote_user: centos

This allows us to modify the remote user instead of using our current logged in user on the control machine (the
machine we run Ansible from).

2.2.3 Priviledge Escalation

Often times we may try to make a change that would require sudo access. By default this priviledge isn’t granted
to Ansible. We will need to provide it. To do this we will of course need to provide your user sudo on the remote
machine. This will have to be done manually, or you will need to run Ansible with a root or different account that
has the access to modify your sudoers priviledge.

Once the remote machine is configured properly we have a series of directives that we can use.

become when set to true or yes will escalate the priviledge

become_user choose which user will be used to escalate priviledge

become_method overrides the default in your ansible configuration file, can use sudo, su, pbrun, pfexec, doas,
dzdo, ksu

Below is an example of using priviledge escalation:

- hosts: all
remote_user: centos
become: yes

We can also apply this to specific tasks throughout the play too!

- hosts: all
remote_user: centos
tasks:
- service: name=firewalld status=stopped enabled=no

become: yes

We can also use other methods like su to escalate priviledge.

- hosts: all
remote_user: centos
become: yes
become_method: su

When using become method and not using a SSH key, you will need to provide the ansible-playbook command
the password for priviledge escalation. To do this you can use the option --ask-become-pass, followed by the
password. If you run the playbook and it hangs it’s possibly stuck at the priviledge escalation prompt, you can use
Control-C to quit and then try again with a valid password.

2.2.4 Tasks

Playbooks also will include a list of tasks. Each are run in the order they are listed. Tasks can also include vars specific
to the task itself, as well as specific arguments documented in the module.

12 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

Tasks will look like this:

tasks:
- name: Stop the Firewalld service and disable it from boot
service: name=firewalld status=stopped enabled=no

We can also specify the task like this:

tasks:
- name: Stop the Firewalld service and disable it from boot
service:
name: firewalld
status: stopped
enabled: no

It’s really up to you, however the first is usually cleaner on some modules, while the second can be useful for modules
with many values. The second will also use YAML for everything, the first will likely need specific json formating for
complex values.

If a task fails please keep in mind the playbook will stop. You will need to fix the task, then you will need to rerun the
playbook. Because of this idempotency is extremely important. If you do not ensure idempotency of your tasks you
will possibly run the same command twice.

When using shell or command modules they will run the command again. To prevent this you should use a
creates flag or use when and have a previous task register if the task needs to run again.

Note: command and shell modules are the only modules that do not follow key=value format. They are in the free
form format of shell: cat myfile or command: cat myfile.

You can also ignore errors if your command task results in a 1 or if a module fails. To ignore errors simply add
ignore_errors: True to your task.

tasks:
- name: get contents of myfile
shell: cat myfile
ignore_errors: True

You can also use previously defined variables in your tasks.

vars:
filename: myfile

tasks:
- name: get contents of {{ filename }}
shell: cat {{ filename }}

2.2.5 Handlers

Ansible also has an event system which allows tasks to trigger actions. To take advantage of this we have “Handlers”.
Handlers can be called using the notify option on tasks. A nice benefit to this is when you have multiple files that
when edited need to restart a service, will notify the hander task which will signal it to run at the end of a play. If
multiple files need to restart the same service, it will only restart the service once at the end of the play (instead of
multiple times). An example of this is below:

2.2. Playbooks 13

Avi Networks Ansible Documentation, Release 17.1.0

handlers:
- name: restart service
service: name=service state=restarted

tasks:
- name: modify config file
template: src=config.j2 dest=/etc/config.conf
notify: restart service

This will tell Ansible that at the end of the play it will restart the service.

For more information on handlers please visit: http://docs.ansible.com/ansible/playbooks_intro.html#
handlers-running-operations-on-change

2.2.6 Roles

Roles are a component of Ansible that allow you to reuse tasks, and other components by putting them in a role.
Which can be distributed to other people via Ansible Galaxy, or shared internally to allow reusing sets of tasks, vars,
etc, to deploy your applications.

An example role can look like this:

- hosts: controllers

roles:
- role: avinetworks.avicontroller

con_controller_ip: 10.10.27.101
con_cores: 4
con_memory_gb: 12

To explain this playbook we will show we have a role: avinetworks.avicontroller, which has variables
con_controller_ip and con_cores, and con_memory_gb specified. There are many others possible, but
since we are just evaluating the example we will use this. The variables are then passed into the roll to replace any
defaults, or simply provide variables that require values. These are referred by roles as “Role Variables”, and lists
of possible options are usually in the documentation of the role README for example: https://galaxy.ansible.com/
avinetworks/avicontroller/ click on the “README” tab of the Galaxy Role.

2.2.7 Include

Play Include

There are two types of includes in Ansible. There are Play includes, and Task includes. Play includes will include
other plays in your playbook. For example if we have a playbook playbook1.yml and we want to include that
playbook in another playbook, such as master_play.yml, master_play.yml would look like this.

- include: playbook1.yml

- name: Master play playbook
hosts: all
tasks:
- debug: mg="Extra Task"

This playbook will execute everything in playbook1.yml and then will continue with the debug task in the next
play in the master_play.yml.

14 Chapter 2. Our Automation

http://docs.ansible.com/ansible/playbooks_intro.html#handlers-running-operations-on-change
http://docs.ansible.com/ansible/playbooks_intro.html#handlers-running-operations-on-change
https://galaxy.ansible.com/avinetworks/avicontroller/
https://galaxy.ansible.com/avinetworks/avicontroller/

Avi Networks Ansible Documentation, Release 17.1.0

Task Include

The second type of include is Task include. Task includes are used to include other files with tasks in them, and can
help break one giant set of tasks into others, as well as control when the other tasks are ran, such as a group of tasks
you only want ran when a specific condition is met.

For example, here is Ubuntu.yml, this file has a few tasks specific to Ubuntu distributions. If you notice we don’t need
tasks: at the top of the file.

- name: Docker | CE | APT | Add Docker GPG Key
apt_key:
id: 0EBFCD88
url: https://download.docker.com/linux/ubuntu/gpg
state: present

- name: Docker | CE | APT | Configure Docker repository
apt_repository:
repo: "deb [arch=amd64] https://download.docker.com/linux/ubuntu {{ ansible_

→˓distribution_release }} stable"
state: present

- name: Docker | CE | APT | Enable Edge repository
apt_repository:
repo: "deb [arch=amd64] https://download.docker.com/linux/ubuntu {{ ansible_

→˓distribution_release }} edge"
state: present

when: docker_channel == "edge"
notify: Docker | CE | APT | Upgrade to Edge

Because these use APT and the repo is for Ubuntu we only need these to run on Ubuntu. So here’s how we would
include this in the playbook as a task include.

- name: Master play playbook
hosts: all
tasks:
- name: Docker | CE | APT | Ubuntu

include: Ubuntu.yml
when: ansible_distribution == "Ubuntu"

This can make complex task executions much easier and faster as if all the tasks in Ubuntu.yml don’t need to run
(system doesn’t match as Ubuntu) then it will skip the entire set of tasks in Ubuntu.yml.

You can also reuse includes and change variables in them. For example lets create message.yml:

- name: Give a message
debug: msg={{ message }}

Let’s call this in the master playbook and change the message.

- name: Master play playbook
hosts: all
tasks:
- include: message.yml message="This is my message to you"
- include: message.yml message="This is my second message to you"

2.2. Playbooks 15

Avi Networks Ansible Documentation, Release 17.1.0

Static and Dynamic Includes

In the previous examples I covered static includes. But now in Ansible 2.0 and later we have Dynamic includes, which
allow us to use variables in our includes. For example:

- name: Master play playbook
hosts: all
tasks:
- include: message.yml message={{ item }}

with_items:
- This is my message to you
- This is my second message to you

We can also use other variables in a dynamic include. Previously we did this:

- name: Master play playbook
hosts: all
tasks:
- name: Docker | CE | APT | Ubuntu

include: Ubuntu.yml
when: ansible_distribution == "Ubuntu"

When we wanted the Ubuntu file to run when the OS matched. Now we can take this a step farther. Let’s say we have
multiple operating systems, Ubuntu, CentOS, RedHat, etc. We can create task files for each of those, then use the
following to dynamically select which one we want to run.

- name: Master play playbook
hosts: all
tasks:
- name: Docker | CE | Repo

include: "{{ ansible_distribution }}.yml"

For more information regarding Dynamic and Static includes please visit: http://docs.ansible.com/ansible/playbooks_
roles.html#dynamic-versus-static-includes

2.2.8 Executing Playbooks

To execute a playbook, you can simply follow this format:

ansible-playbook playbook.yml

There are many options that can be used alongside the ansible-playbook command. To view these please use
ansible-playbook --help.

Passing Variables

When executing the playbook command, we can also pass variables via the command line. To do so we will use the
following command:

ansible-playbook playbook.yml --extra-vars "variable=value variable2=value2"

16 Chapter 2. Our Automation

http://docs.ansible.com/ansible/playbooks_roles.html#dynamic-versus-static-includes
http://docs.ansible.com/ansible/playbooks_roles.html#dynamic-versus-static-includes

Avi Networks Ansible Documentation, Release 17.1.0

Checking Syntax

The ansible-playbook command can also be used to validate the syntax of your playbook without executing it
against the remote hosts. This will help prevent errors from causing mid play crashes and other issues. To do this use
the following command.

ansible-playbook playbook.yml --syntax-check

This is extremely useful as a way to lint test your playbooks.

2.2.9 Variables

• Rules of Variables

• Inventory Variables

– Host vars

– Group vars

• Playbook Variables

• Included files and roles

• Registered Variables

• Accessing Variable Data

• Variable Precedence

• Ansible Facts

• Using Variables in Jinja Templates

• Using Variables in Tasks

• Jinja Filters

– Math Operators

– Comparisons

– Logic

– Other Operators

– ipaddr

– default

– join

• Python Methods

– split

Using Ansible we can also use variables to use the same playbooks, plays, tasks, etc. We can also create variables by
registering the results from previous tasks. Variables can also be used in Conditionals and Loops.

2.2. Playbooks 17

Avi Networks Ansible Documentation, Release 17.1.0

Rules of Variables

Variables must:

• start with a letter

• not include a -, a space, or .

• not be a number

Examples of invalid variables are 123, variable-name, variable name, and variable.name.

Valid ones can be variable, variable_name, and variable1

You can also use dictionaries which are supported to map keys to values.

variable:
key1: value
key2: value

The previous variable can be referenced by either variable['key1'] or by variable.key1 however you
cannot define them in that way, this only works one direction.

Using “dot” notation the following are reserved as they are python methods:

add, append, as_integer_ratio, bit_length, capitalize, center, clear, conjugate, copy,
count, decode, denominator, difference, difference_update, discard, encode, endswith,
expandtabs, extend, find, format, fromhex, fromkeys, get, has_key, hex, imag, index,
insert, intersection, intersection_update, isalnum, isalpha, isdecimal, isdigit,
isdisjoint, is_integer, islower, isnumeric, isspace, issubset, issuperset, istitle,
isupper, items, iteritems, iterkeys, itervalues, join, keys, ljust, lower, lstrip,
numerator, partition, pop, popitem, real, remove, replace, reverse, rfind, rindex, rjust,
rpartition, rsplit, rstrip, setdefault, sort, split, splitlines, startswith, strip,
swapcase, symmetric_difference, symmetric_difference_update, title, translate, union,
update, upper, values, viewitems, viewkeys, viewvalues, zfill

Inventory Variables

Host vars

To specify variables in your inventory files for a specific host, you would use the following key=value format.

host1 key1=value1 key2=value2

This will provide the host with key1 and key2, which will be used in the playbooks and ad-hoc commands referenc-
ing this host.

Group vars

To specify variables in your inventory files you would put the variable on the same line in key=value format.

To specify group variables in an inventory file:

[mygroup]
host1
host2

(continues on next page)

18 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

(continued from previous page)

[mygroup:vars]
variable1=value1
variable2=value2
variable3=value3

This would then provide each of these 3 variables for all hosts in mygroup.

Playbook Variables

In playbooks we can define variables in plays by the following.

- hosts: all
vars:
variable1: value1

Included files and roles

We’ve already covered this previously. To specify a variable to an include:

tasks:
- include: tasks.yml variable1=value

You can also specify variables this way as well.

tasks:
- include: tasks.yml
vars:

variable1: value

To use the value in the tasks.yml file we will reference the var as {{ variable1 }}.

Registered Variables

An extremely useful feature of Ansible is the ability to register the output of a task into a variable so that it can be
referenced later. To view possible output of a task that would be in the registered variable, you can look at the output
of -v. What is included in the results value is what would be contained in the registered variable.

For example:

- hosts: all
tasks:
- stat: path=/tmp

register: tmp_folder_data

- debug: msg={{ tmp_folder_data }}

This sniplet would look for /tmp on the remote host, and get the information of that folder as per the stat module,
and then provide us with all the information of that folder by the debug module and printing it to output.

Accessing Variable Data

Sometimes our variables may have more data to them than just a single value. For example the previous example of
using stat module. It returned a bunch of information to us.

2.2. Playbooks 19

Avi Networks Ansible Documentation, Release 17.1.0

{
"tmp_data": {

"changed": false,
"stat": {

"atime": 1481748353.0,
"ctime": 1492640380.9926686,
"dev": 1,
"executable": true,
"exists": true,
"gid": 0,
"gr_name": "root",
"inode": 281474977014021,
"isblk": false,
"ischr": false,
"isdir": true,
"isfifo": false,
"isgid": false,
"islnk": false,
"isreg": false,
"issock": false,
"isuid": false,
"mode": "1777",
"mtime": 1492640380.9926686,
"nlink": 2,
"path": "/tmp",
"pw_name": "root",
"readable": true,
"rgrp": true,
"roth": true,
"rusr": true,
"size": 0,
"uid": 0,
"wgrp": true,
"woth": true,
"writeable": true,
"wusr": true,
"xgrp": true,
"xoth": true,
"xusr": true

}
}

}

To access a specific item for example exists, in this object we can use two types of notation.

{{ tmp_data["stat"]["exists"] }}

{{ tmp_data.stat.exists }}

Both will return true as the result.

To access the first element of an array we would use data[0].

Variable Precedence

Because of how many possible places we can put a variable, we will need to understand variable precedence. Top of
the list is the weakest, bottom is the strongest.

20 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

• role defaults

• inventory INI or script group vars

• inventory group_vars/all

• playbook group_vars/all

• inventory group_vars/*

• playbook group_vars/*

• inventory INI or script host vars

• inventory host_vars/*

• playbook host_vars/*

• host facts

• play vars

• play vars_prompt

• play vars_files

• role vars (defined in role/vars/main.yml)

• block vars (only for tasks in block)

• task vars (only for the task)

• role (and include_role) params

• include params

• include_vars

• set_facts / registered vars

• extra vars (always win precedence)

Extra vars are what we specify on the command line as we talked about earlier with -e or --extra-vars.

There are also 3 types of variable scopes, Global, Play, and Host.

• Global is set via command line, Environment Variable, or using the config file.

• Play is set in the play, using vars entries, include_vars, role defaults, and vars.

• Host is set in the inventory, facts, or registered output from tasks.

Ansible Facts

Ansible by default will gather facts about the remote host. You can see all the facts gathered from a remote host by
using the command:

ansible hostname -m setup

Of course replace hostname with the name of the host, the host will need to be in your inventory file. Once it runs it
will return a JSON object with all the information Ansible knows of the host. It can return interface information, disk
information, kernel information, OS information, and much more.

To turn off Ansible Facts on a host you would use the following:

2.2. Playbooks 21

Avi Networks Ansible Documentation, Release 17.1.0

- hosts: all
gather_facts: no

Setting gather_facts to no will disable the gathering of facts from the remote host.

Ansible also has Local Facts, which can be provided by custom facts modules. For more information please visit:
http://docs.ansible.com/ansible/playbooks_variables.html#local-facts-facts-d

Using Variables in Jinja Templates

Ansible uses the Jinja template system to create files and handle variables within playbooks. An example of a a
template task and the jinja template would be:

vars:
server_port: 9060
server_ip: 192.168.1.20

tasks:
- template: src=server.j2 dest=/etc/app/server.conf mode=0644

port={{ server_port }}
serverIP={{ server_ip }}

So the end result of the file located at /etc/app/server.conf would be:

port=9060
serverIP=192.168.1.20

Using Variables in Tasks

Ansible allows us to use Jinja within playbooks as well. Making reusing tasks much easier as well as customizing
tasks for a different operating system, or any configuration that may differ from server to server.

For example we can change the variables based on the os distribution. Then use those to define a package name.
This allows you to support cases in which Apache on CentOS is httpd but on Ubuntu is apache. We can load the
variables specific to that OS and use those.

Ubuntu.yml

package_name: apache

CentOS.yml

package_name: httpd

Playbook Excerpt

- name: Include OS Specific Variables
include_vars: "{{ ansible_distribution }}.yml"

- name: Install Package
package: name={{ package_name }} state=present

If you didn’t notice, when we did the include_vars the value had "" (double quotes) around it. Any value that
starts with a variable will need quotes around it. This is a YAML syntax usage correction. Failure to do this will cause
Ansible to hit an error on execution.

22 Chapter 2. Our Automation

http://docs.ansible.com/ansible/playbooks_variables.html#local-facts-facts-d

Avi Networks Ansible Documentation, Release 17.1.0

Jinja Filters

There are many filters that can be extremely useful in modifying playbooks, values, and even dynamically handling
data for variables. We can force things to be uppercase, lowercase, combine items, and much more. Jinja has a list of
built-in filters documented here: http://jinja.pocoo.org/docs/2.9/templates/#builtin-filters

We will go over a few of these filters that have been common throughout our experience, and provide you some
examples.

Math Operators

Jinja will also let us perform mathmatical actions on values. For example

- hosts: all
vars:
some_number: 2

tasks:
- debug: msg={{ some_number + 1 }}

The result of this would give us a message with the number 3.

+ Adds objects together, it’s not recommended to use this for strings, for strings use ~ which will concatenate strings.

- Will subtract the second number from the first

/ Divides two numbers and will return a float

// Divides two numbers and will return a truncated integer, this does not round, it just drops everything after the .

% Provides the remainder of an integer division

* Multiplies the left operand with the right. {{ 2 * 4 }} will return 8. {{ '#' * 40 }} would return 40 #
symbols

** Raises the left operated to the power of the right.

Comparisons

== Compares two objects for equality.

!= Compares two objects for inequality.

> true if the left hand side is greater than the right hand side.

>= true if the left hand side is greater or equal to the right hand side.

< true if the left hand side is lower than the right hand side.

<= true if the left hand side is lower or equal to the right hand side.

These are extremely common in when portions of tasks.

Logic

and Return true if the left and the right operand are true.

or Return true if the left or the right operand are true.

not negate a statement (see below).

2.2. Playbooks 23

http://jinja.pocoo.org/docs/2.9/templates/#builtin-filters

Avi Networks Ansible Documentation, Release 17.1.0

(expr) group an expression.

These can be useful when handing when statements or if statements in your jinja templates.

Other Operators

The following operators are very useful but don’t fit into any of the other two categories:

in Perform a sequence / mapping containment test. Returns true if the left operand is contained in the right. {{ 1 in
[1, 2, 3] }} would, for example, return true.

is Performs a test.

Applies a filter.

~ Converts all operands into strings and concatenates them. {{ "Hello " ~ name ~ "!" }} would return
(assuming name is set to ‘John’) Hello John!.

() Call a callable: {{ post.render() }}. Inside of the parentheses you can use positional arguments and keyword
arguments like in Python: {{ post.render(user, full=true) }}.

. / [] Get an attribute of an object.

ipaddr

For instance lets validate the ip address we pass as a variable.

To use ipaddr we will need to install netaddr.

pip install netaddr

ansible-playbook playbook.yml --extra-vars "controller_ip=10.23.222.10"

- hosts: any
roles:
- role: avinetworks.avicontroller

con_controller_ip: {{ controller_ip | ipaddr }}

If the supplied controller_ip isn’t a valid IP, the value of con_controller_ip will be “False” which would
result in a failure of the execution.

default

The default() filter allows us to provide a default to a variable if it’s not defined. Preventing an error if a value
isn’t provided. For example:

{{ my_string|default('You didn't provide a string')}}

Would provide the result You didn't provide a string if my_string wasn’t defined.

In Ansible Use

24 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

tasks:
- debug: msg={{ my_string | default('You didn't provide a string')}}

When executing this if you don’t provide a variable named my_string then the debug module will return the
message You didn't provide a string. This can be useful when not requiring variables.

join

When using the join() filter we can join items in an array into a string.

vars:
my_list:
- item1
- item2
- item3

tasks:
- debug: msg={{ my_list | join(',')}}

Would create me a comma seperated list of my_list which would look like item1,item2,item3

Python Methods

In practice we found that Python methods can also be useful when parsing text that is put into a variable, replace text,
and many more python methods.

split

For instance, we want to split up a comma seperated list that was provided as a string variable to Ansible.

To do this we can do the following using the split python method.

tasks:
- name: build server list
set_fact:

servers: "{{ servers|default([]) + [{'ip': {'addr': item, 'type': 'V4'}}] }}"
with_items: "{{ pool_servers.split(',') }}"

Using that task we are able to take in a comma seperated list of server ip addresses as pool_servers and iterate
through those and append those to the servers variable.

2.2.10 Loops

Loops are extremely common in playbooks and tasks. It’s a great way to reuse a single task to iterate through a list of
values or objects. We can use it to install multiple packages, maybe run a task on multiple objects.

Standard Loops

The most common loop you will likely use is the standard loop. Which we use with_items provided to the task.

2.2. Playbooks 25

Avi Networks Ansible Documentation, Release 17.1.0

- name: Install packages
package: name={{ item }} state=present
with_items:
- httpd
- memcached

This will run the task twice once with httpd as the package name, and once with memcached as the package name.

We can also iterate through hashes and reference subkeys.

- name: Add user and assign groups
user:
name: "{{ item.name }}"
group: "{{ item.groups }}"
state: present

with_items:
- name: user1

groups: wheel
- name: user2

groups: root

With items can also have a non-yaml hash

- name: Add user and assign groups
user:
name: "{{ item.name }}"
group: "{{ item.groups }}"
state: present

with_items:
- { name: user1, groups: wheel }
- { name: user2, groups: root }

Nested Loops

Loops can also be nested:

vars:
ip_addresses:
- 10.10.20.21
- 10.10.20.22
- 10.10.20.23

ports: ['80','443']
tasks:

- name: give multiple users access to multiple databases
mysql_user:

name: "{{ item[0] }}"
priv: "{{ item[1] }}.*:ALL"
append_privs: yes
password: "password"

with_nested:
- ['', 'user2']
- ['database1', 'database2', 'database3']

You can also use a variable with a list.

26 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

vars:
users:
- user1
- user2

databases:
- database1
- database2
- database3

tasks:
- name: give multiple users access to multiple databases
mysql_user:

name: "{{ item[0] }}"
priv: "{{ item[1] }}.*:ALL"
append_privs: yes
password: "password"

with_nested:
- {{ users }}
- {{ databases }}

This could help you reuse the same user list and database list for other tasks too.

Looping with Hashes

Lets use a hash of a few datapoints.

vars:
pools:
pool1:

servers:
- { "ip": { "addr": "10.90.130.13", "type": "V4" }}
- { "ip": { "addr": "10.90.130.15", "type": "V4" }}

pool2:
servers:

- { "ip": { "addr": "10.90.132.13", "type": "V4" }}
- { "ip": { "addr": "10.90.132.15", "type": "V4" }}

tasks:
- name: Create the pools
avi_pool:

controller: 10.10.27.90
username: admin
password: AviNetworks123!
tenant: admin
name: "{{ item.key }}"
state: present
enabled: false
health_monitor_refs:
- '/api/healthmonitor?name=System-HTTP'

servers: "{{ item.value.servers }}"
with_dict:

"{{ pools }}"

This would iterate through our list of pools, and with their different servers create 2 new pools via the avi_pool
module.

2.2. Playbooks 27

Avi Networks Ansible Documentation, Release 17.1.0

Looping with Files

We can also loop over files for example printing content of a file we have locally. Files are either absolute location or
relative.

- tasks:
- debug: msg={{ item }}

with_file:
- file01
- file02

This will print out both file01 and file02 to our screen.

Looping with Fileglobs

Using a fileglob we can output all files in a directory that match a pattern, non-recursively.

- tasks:
- name: ensure remote directory exists

file: dest="/opt/mydirectory" state=directory

- name: deploy my files
copy: src="{{ item }}" dest="/opt/mydirectory/"
with_fileglob:

- "mydirectory/*"

Note: When using a relative path with with_fileglob in a role, Ansible resolves the path relative to the
roles/<rolename>/files directory.

Looping with Subelements

Lets take an example where we need to setup a set of servers before deploying Avi Controllers to them. We need to
create users, and allow their SSH keys to be used. We will define a set a vars and then use those to create our users
with associated keys.

users:
- name: user1
ssh_pub_key:
- /tmp/user1/ssh/user1.pub
- /tmp/user1/ssh/otherkey.pub

- name: user2
ssh_pub_key:
- /tmp/user2/ssh/user2.pub

- name: Create User
user:
name: "{{ item.name }}"
state: present
generate_ssh_key: yes

with_items:
- "{{ users }}"

(continues on next page)

28 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

(continued from previous page)

- name: Set authorized ssh key
authorized_key:
user: "{{ item.0.name }}"
key: "{{ lookup('file', item.1) }}"

with_subelements:
- "{{ users }}"
- ssh_pub_key

Registered Variables with Loops

When using register with a loop the results will contain a list of the responses. This can be very useful when
registering host creation and getting the servers from the array from the task.

tasks:
- name: Provision a set of instances
ec2:

aws_access_key: "{{ec2_access_key}}"
aws_secret_key: "{{ec2_secret_key}}"
key_name: aws_key
group: server
instance_type: t2.micro
image: ami-123456
wait: true
exact_count: 1
count_tag:
Name: "{{ item }}"

instance_tags:
Name: "{{ item }}"

register: ec2
with_items:
- server1
- server2
- server3

This would then return an array of results, which each would contain IP addresses and other data from the AWS api
call. We can then use the returned data to add servers to a group, create an array to submit to a controller as new pool
servers as well.

Value returned from Ansible

Looping over Inventory

If you want to loop over a group of inventory hosts or a subset you can use with_items and the variable
play_hosts or using the group variable. Play hosts would use the hosts assigned to the current play in the
playbook. Group variable usage is groups['groupname'] and would use all of the hosts in the declared group.

This example would give us a list of all the hosts in the current play.

- debug: msg={{ item }}
with_items:
- "{{ play_hosts }}"

This example would give us a list of all the hosts in the group we specified in this case servers.

2.2. Playbooks 29

Avi Networks Ansible Documentation, Release 17.1.0

- debug: msg={{ item }}
with_items:
- "{{ groups['servers']}}"

2.2.11 Blocks

As long as you are using Ansible 2.0 and later, you can use blocks. These help in logically grouping a set of tasks in
your playbooks, as well as error handling. Most options you can pass for a task will work for a block. However at this
moment with_items, and other loops do not work.

Grouping tasks

tasks:
- block:

- yum: name=httpd state=present

- template: src=httpd.j2 dest=/etc/httpd/conf/httpd.conf

- service: name=httpd state=started enabled=true

when: ansible_distribution == "CentOS"
become: true
become_user: root

This is an example of creating a block of tasks which are only to run when the OS Distribution is CentOS. It helps
clean up cases where you may have multiple tasks that rely on the same when statements, or other commonalities that
can be combined.

Error Handing

Another nice feature of blocks includes the ability to add error handling to your playbooks. You can recover or create
a process to roll back your tasks if a failure occurs. This can have great benefits for some use cases.

There are a few options in block we can use such as of course block, but also rescue, and always.

tasks:
- block:

- debug: msg="Executing task 1"
- shell: /bin/false
- debug: msg="Executing task 2"

rescue:
- debug: msg="The previous command failed"
- debug: msg="Execute rescue task 1"
- shell: /bin/true

always:
- debug: msg="I will always work regardless of any failures prior"

To explain what happens here:

First we start executing tasks in the block. However the second task shell returns false which will fail the task.
This results in the skip of “task 2”. Then the block will load the rescue portion of the block. We can use this section
to both inform the user that a block failed, and issue commands to fix it. Then the block will progress. It will always
run the section always as the always section will run regardless of error condition on the block or rescue
sections. Which could be handy to proceed or change data for each run successful or not.

30 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

2.2.12 Best Practices

• Repository Layout

– Basic

– Alternative

• Use Dynamic Inventory when Possible

• How to seperate Staging vs Production

• Version Control

• Vault

There are a few key things we need to keep in mind when dealing with the deployment of Avi with Ansible.

• A change in Ansible role values will result in a change in the Avi deployment. Which will likely result in a
controller being taken offline for a bit as it restarts with the new service configuration.

• Always, Always verify your values to desired values before execution. Ansible is powerful, it will do what you
tell it. Remember: Garbage in, Garbage out.

• Automation makes it less likely to make a mistake, but automation also allows you scale the mistake very
rapidly. Always test, or have someone else verify your code prior to execution.

Repository Layout

We recommend following the structure described by Ansible here http://docs.ansible.com/ansible/playbooks_best_
practices.html#directory-layout

Basic

production # production inventory file
stage # stage inventory file

group-vars/
group1 # variables assigned to hosts in group1
group2 # variables assigned to hosts in group2

host_vars/
hostname1 # variables assigned to 'hostname1'
hostname2 # variables assigned to 'hostname2'

library/ # custom modules go here

avicontroller.yml # playbook that can deploy your controller or
build your controller

avise.yml # playbook that can prepare your SE servers
for the Linux Server Cluster Avi deploy

create_vip.yml # playbook that uses modules to create vip
... # if you have too many of these,

think about combining tasks into roles,
and providing variables to roles

(continues on next page)

2.2. Playbooks 31

http://docs.ansible.com/ansible/playbooks_best_practices.html#directory-layout
http://docs.ansible.com/ansible/playbooks_best_practices.html#directory-layout

Avi Networks Ansible Documentation, Release 17.1.0

(continued from previous page)

roles/
avinetworks.avisdk # avisdk role downloaded from Galaxy
avinetworks.avicontroller # avicontroller role downloaded from Galaxy
avinetworks.docker # docker role downloaded from Galaxy
automation_role/ # this can be the custom role you create
tasks/

main.yml # tasks that are common to your playbooks
vars/

main.yml # vars you set for your tasks within the role
defaults/

main.yml # default values you that can provide
defaults to your role tasks
and can be overriden by playbook

library/ # can also contain custom modules

Alternative

production/
hosts # production inventory file
group-vars/
group1 # variables assigned to hosts in group1
group2 # variables assigned to hosts in group2

host_vars/
hostname1 # variables assigned to 'hostname1'
hostname2 # variables assigned to 'hostname2'

stage/
hosts # stage inventory file
group-vars/
group1 # variables assigned to hosts in group1
group2 # variables assigned to hosts in group2

host_vars/
hostname1 # variables assigned to 'hostname1'
hostname2 # variables assigned to 'hostname2'

library/ # custom modules go here

avicontroller.yml # playbook that can deploy your controller or
build your controller

avise.yml # playbook that can prepare your SE servers
for the Linux Server Cluster Avi deploy

create_vip.yml # playbook that uses modules to create vip
... # if you have too many of these,

think about combining tasks into roles,
and providing variables to roles

roles/
avinetworks.avisdk # avisdk role downloaded from Galaxy
avinetworks.avicontroller # avicontroller role downloaded from Galaxy
avinetworks.docker # docker role downloaded from Galaxy
automation_role/ # this can be the custom role you create
tasks/

(continues on next page)

32 Chapter 2. Our Automation

Avi Networks Ansible Documentation, Release 17.1.0

(continued from previous page)

main.yml # tasks that are common to your playbooks
vars/

main.yml # vars you set for your tasks within the role
defaults/

main.yml # default values you that can provide
defaults to your role tasks
and can be overriden by playbook

library/ # can also contain custom modules

Use Dynamic Inventory when Possible

If you are deploying Avi in a cloud environment using Ansible, it’s best to use Dynamic Inventory. Dynamic Inventory
allows an inventory script to be executed and based on parameters return specific hosts based on tags or other values.
For further information please see: http://docs.ansible.com/ansible/intro_dynamic_inventory.html

How to seperate Staging vs Production

When using a static inventory, you will want to seperate staging vs production. These same practices can be applied
to Dynamic Inventory as well. For example, using a AWS Tag “environment:production” would group systems in the
ec2_tag_environment_production group. Our recommendation is to seperate your static hosts between two files for
staging and production. This will prevent any possible confusion between what hosts are being executed on prior to
running a playbook. An example run would look like

ansible-playbook -i production myplaybook.yml

Running it this way will ensure that only the production hosts are being executed against.

Version Control

The use of Version Control software is extremely important. It will help maintain an audit trail, and allow others to
verify code changes prior to pulling them into the master or branch used to execute. It’s extremely important to have
someone verify configuration changes. A simple typo can easily unintentionally down a service or cause interruption.

Vault

We recommend encrypting anything that includes sensitive information, such as password. Ansible has a feature called
Vault, which can by the command ansible-vault. Best advice is to create a file named vars and vault, located
in the group_vars/ directory. In the vars file, define all the possible variables needed, including sensitive ones.
Then in the vault file copy all the sensitive variables over and prefix with vault_. Then in the vars file point to
the matching vault_ variables. Then using ansible-vault encrypt vault.yml to encrypt your sensitive
variables. To decrypt on execution use --ask-vault-pass. When executing your playbook it will prompt for the
decrpytion password.

Ansible’s configuration language is put into a Playbook. Playbooks have many components including hosts, variables,
tasks, etc. We will cover all of these components and more throughout this section. Another way to look at playbooks
is as a instruction for Ansible to orchestrate, provision, deploy, and configure your environment.

Playbooks can contain a list one or multiple plays. Each play can target the same or different systems, but plays are
usually targetted to a specific group of systems.

Here is an example playbook containing a single play.

2.2. Playbooks 33

http://docs.ansible.com/ansible/intro_dynamic_inventory.html

Avi Networks Ansible Documentation, Release 17.1.0

- hosts: all

vars:
controller_version: latest

roles:
- role: avinetworks.docker
- role: avinetworks.avicontroller

con_version: "{{ controller_version }}"

As you can see it’s also in YAML format which we’ve covered earlier.

34 Chapter 2. Our Automation

	What is Ansible?
	Our Automation
	Introduction
	Playbooks

